AUDIO DENOISING USING U-NET ARCHITECTURE

dc.contributor.authorJIMON, L.-Daniel
dc.contributor.authorVAIDA Mircea-F.
dc.date.accessioned2025-07-14T15:50:52Z
dc.date.issued2025-06-27
dc.description.abstractAudio denoising is a pivotal task in audio signal processing. This paper presents a machine learning approach using a U-Net architecture to denoise musical audio signals affected by four distinct noise types: white noise, urban noise, reverberation, and noise cancellation artifacts. The model was evaluated on datasets derived from IRMAS and UrbanSound8K. Objective and subjective evaluation metrics were used, which show the model's effectiveness in filtering white and urban noise. However, performance on reverberation and noise cancellation artifacts is limited, indicating areas for future architectural and methodological improvements.
dc.identifier.issn1221 – 6542
dc.identifier.urihttps://oasis.utcluj.app/handle/123456789/699
dc.language.isoen
dc.publisherTechnical University of Cluj-Napoca
dc.relation.ispartofseriesVolume 65,; Number 1,
dc.subjectaudio denoising
dc.subjectmachine learning
dc.subjectU-Net
dc.subjectdeep learning
dc.subjectsignal processing.
dc.titleAUDIO DENOISING USING U-NET ARCHITECTURE
dc.typedataset

Fișiere

Pachet original

Acum arăt 1 - 1 din 1
Imagine miniatură
Nume:
BT_4_Audio_Denoiser_Paper_Final.pdf
Dimensiune:
408.27 KB
Format:
Adobe Portable Document Format

Pachet licență

Acum arăt 1 - 1 din 1
Miniatură indisponibilă
Nume:
license.txt
Dimensiune:
1.71 KB
Format:
Item-specific license agreed to upon submission
Descriere: