TEXTURE BASED POLARIMETRIC SYNTHETIC APERTURE RADAR IMAGE CLASSIFICATION USING COVARIANCE MATRICES

dc.contributor.authorILEA Ioana
dc.contributor.authorMICLEA-CECALACA Andreia Valentina
dc.contributor.authorCISLARIU Mihaela
dc.contributor.authorMALUTAN Raul
dc.contributor.authorGROSU George
dc.date.accessioned2025-07-14T15:42:58Z
dc.date.issued2025-06-26
dc.description.abstractThis paper proposes a workflow for polarimetric SAR (PolSAR) image classification based on statistical texture descriptors. The methodology presented in this paper involves spatial interdependence between neighboring pixels as well as multiscale texture representation using wavelet decomposition. The collected features are modeled by zero-mean Multivariate Gaussian Distributions (MGDs). Then, their estimated covariance matrix acts as the texture descriptor and is employed in a k-nearest neighbors (kNN) classifier. Experiments using real PolSAR data validate the proposed approaches' accuracy in land cover categorization, showing their potential for reliable class identification.
dc.identifier.issn1221 – 6542
dc.identifier.urihttps://oasis.utcluj.app/handle/123456789/698
dc.language.isoen
dc.publisherTechnical University of Cluj-Napoca
dc.relation.ispartofseriesVolume 65; Number 1
dc.subjectPolSAR image
dc.subjecttexture
dc.subjectspatial dependence
dc.subjectmultiscale analysis
dc.subjectcovariance matrix
dc.subjectclassification
dc.titleTEXTURE BASED POLARIMETRIC SYNTHETIC APERTURE RADAR IMAGE CLASSIFICATION USING COVARIANCE MATRICES
dc.typedataset

Fișiere

Pachet original

Acum arăt 1 - 1 din 1
Imagine miniatură
Nume:
BT_3_Articol ATN.pdf
Dimensiune:
467.58 KB
Format:
Adobe Portable Document Format

Pachet licență

Acum arăt 1 - 1 din 1
Miniatură indisponibilă
Nume:
license.txt
Dimensiune:
1.71 KB
Format:
Item-specific license agreed to upon submission
Descriere: